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1 Introduction

In many repeated interactions, repetition is not guaranteed but instead must be agreed

upon. Workers can quit, customers can walk away, and couples can break up. If it is

possible to strategically exit from a repeated interaction, the ordinary repeated-game

framework no longer applies. Ordinary repeated games assume that the same set of

players play the same stage game repeatedly for a fixed (possibly infinite) length of

time. Therefore no player has a choice to exit from the game. At the other extreme,

random matching games1 assume that in every period a player is randomly matched

with a new partner. Therefore no player has a choice to continue the game with the

same partner. However, many economic situations are in an intermediate case where

players can play a game repeatedly, but they can also terminate the interaction. There

is a growing literature on these “endogenously repeated” games.

In this literature, three issues have been mainly analyzed. First, ordinary trigger

strategies do not constitute an equilibrium since cooperation from the beginning of a

relationship is vulnerable to defection and running away. Instead, gradual cooperation

or trust-building strategy becomes an equilibrium. (Datta, 1996; Kranton, 1996a;

Fujiwara-Greve, 2002 and Fujiwara-Greve and Okuno-Fujiwara, 2009.) Second, gradual

cooperation is also useful in incomplete information models to sort out the types of

players. (Ghosh and Ray, 1996; Kranton, 1996a,b; Watson, 2002 and Furusawa and

Kawakami, 2008.) Third, a modified folk theorem holds with appropriate lower bounds

of the equilibrium payoffs. (Casas-Arce, 2007 and Yasuda, 2007.)

We add a new angle to the analysis of the endogenously repeated games by looking

at the interaction between in-game behavior and what a player may receive outside

of the game. In the literature, often the outside structure of a game is fixed and the

analysis is focused on in-game strategic outcomes given the outside structure. Even in

the above-mentioned endogenously repeated game literature, the continuation payoff

after termination of a partnership is unique. By contrast in other research fields such

as search theory and operations research, the main interest lies in the effect of outside

structural changes on individual behavior/decision-making, but the strategic interac-

tion among decision-makers is omitted. In this paper we consider strategic interaction

of two players under varying outside structures of the game.2

1See for example, Kandori (1992), Ellison, (1994), and Okuno-Fujiwara and Postlewaite (1995).
2Casas-Arce (2007) also considers variations of outside option values as well as not only quitting

but also firing the opponent. His focus is the use of firing and quitting options as punishment to
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P1 \ P2 C D
C 5, 5 −10, 7
D 7, −10 0, 0

Table 1: An Example

Specifically, we examine variants of repeated Prisoner’s Dilemma from which players

can exit by taking an outside option and investigate effects of outside option structure

on the sustainability of cooperation. It turns out that the “locked-in” feature of ordi-

nary repeated game is a very strong cooperation enforcement system. The existence

of a relevant outside option (greater than the in-game punishment payoff) increases

the necessary level of discount factor to sustain cooperation as compared to the one in

ordinary repeated games, and in some cases for any discount factor cooperation is not

possible. However, within the outside option model, the relative difficulty of repeated

cooperation is dependent on the structure of outside options. In particular, if the op-

tion values are uncertain, in some cases it is easier to sustain repeated cooperation

than when they are certain. Therefore, perturbation of outside options is not always

bad for cooperation.

Let us give an example to explain the logic. In each period, as long as the two

players are in the game, they play the Prisoner’s Dilemma of Table 1. After playing

the Prisoner’s Dilemma, an outside option is available to Player 1. Player 2 has no

such option. The game repeats (Prisoner’s Dilemma and then the outside option to

exit) as long as Player 1 does not take the outside option, and each player maximizes

the total expected discounted payoff with a discount factor δ ∈ (0, 1). Suppose that,

in any period, the outside option is the same and unique, and it gives the total payoff

of 4/(1 − δ) to Player 1 after exit. Player 2’s payoff after Player 1 ends the game is

normalized to be zero.

Note that if the game is an ordinary repeated game without the outside option, the

infinitely repeated cooperation (C,C), (C,C), . . . (which we call the eternal cooperation)

is sustainable by the grim trigger strategy if

5

1 − δ
= 7 + δ

0

1 − δ
⇐⇒ δ = 2

7
≈ 0.285.

However, if the outside option of the value 4/(1− δ) is available, Player 1’s contin-

sustain cooperation in fixed length repeated games. Thus our focus is complementary to his.
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uation value after choosing D is increased to 4/(1 − δ). Therefore, Player 1 may not

follow the eternal cooperation (C,C), (C,C), . . . even if δ is not so small. For example,

when δ = 0.6,
5

1 − δ
= 12.5 < 13 = 7 + δ

4

1 − δ
.

This illustrates that the existence of an outside option greater than the in-game pun-

ishment payoff creates difficulty in achieving cooperation, in the sense that the range

of discount factors that sustain repeated cooperation shrinks.

Next, suppose that, at the end of each period, Player 1 has two possible outside

options of the form (4 + α)/(1 − δ) and (4 − α)/(1 − δ) (where α > 0), and these

arrive with equal probability. The average outside option is 4/(1−δ). When α is small

(i.e., less than 1), then there is no point of taking any of the outside options if players

are to repeat (C,C). When α is large enough, however, the better outside option

exceeds the payoff from the repeated (C,C) so that the infinitely repeated cooperation

becomes impossible for any δ. However, Player 1 may cooperate until she receives the

better option. We call this play path stochastic cooperation. Let us compute the total

expected discounted payoff of cooperation until the better option arrives. Let V be

the continuation value at the end of a period, before an option realizes. Then the total

expected payoff of repeating (C,C) until (4 + α)/(1− δ) arrives is of the form 5 + δV ,

where the continuation value V satisfies the following recursive equation.

V =
1

2
· 4 + α

1 − δ
+

1

2
(5 + δV ).

For example, when α = 1.5 and δ = 0.6, then V ≈ 13.39, and the value of the

stochastic cooperation is 5 + δV ≈ 13.0357. This is greater than the value of the

eternal cooperation, 12.5 = 5/(1 − δ).

The value of one-shot deviations also needs to be checked more carefully. The

optimal exit strategy for Player 1 is either to exit immediately by taking any option or

to wait for (4 + α)/(1 − δ). If she deviates and then waits for the good option while

suffering from the punishment payoff of 0 in the stage game, the total expected payoff

is of the form 7 + δW , where the continuation value W satisfies

W =
1

2
· 4 + α

1 − δ
+

1

2
(0 + δW ).

Thus 7 + δW ≈ 12.89 for α = 1.5 and δ = 0.6. If Player 1 defects and then exits

immediately by taking any option, the expected payoff is 7 + δ 4
1−δ

= 13 as before.
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Therefore, in this example, it is optimal to exit immediately after a deviation. However,

5 + δV > 13 = 7 + δ 4
1−δ

implies that δ = 0.6 sustains the stochastic cooperation,

although it does not sustain any cooperation when the outside option is 4/(1 − δ) for

sure.

The above example shows that the structure of outside options makes a difference

in sustaining cooperation for mid-range discount factors. In addition, given a discount

factor and the mean of the outside options, we can investigate how the spread α affects

the sustainability of cooperation. In this example, when α is small, no cooperation is

possible, just like in the unique option case. As α increases, the value of cooperation

while waiting for the good option increases so that stochastic cooperation becomes an

equilibrium behavior.3 This can be generalized for a mid-range of δ and for a class

of general distributions of outside options. Therefore perturbations of outside options

may enhance cooperation.

The repeated game literature, however, so far found negative effects of perturbations

on cooperation. Rotemberg and Saloner (1986) perturb payoffs of the stage game,

while Baye and Jansen (1996) and Dal Bó (2007) perturb the discount factor.4 In

these models the optimal (eternal) cooperation levels are shown to be lower than the

one in the absence of perturbation. Although they did not investigate the lower bound

of the discount factors by fixing a level of cooperation, it would be greater than the

one under no perturbation. This is clarified in Yasuda and Fujiwara-Greve (2009).

The key to these negative results is that, in ordinary repeated games, when the

perturbation creates difficulty to cooperate (a high deviation payoff or a low value of

the discount factor), the players need to play a non-cooperative action in that period,

which reduces the on-path payoff, i.e., the incentive to follow the equilibrium strat-

egy. Therefore the players need to be more patient under perturbation than in the

deterministic case.5

By contrast, in our outside option model, Player 1 can choose between playing

the game forever and stopping. Thus, when the perturbation creates a difficulty to

cooperate (a high outside option), it does not mean that Player 1 must endure the low

3As α increases more, e.g., α > 1.6, then 7+ δW > 7+ δ 4
1−δ so that after defection, Player 1 wants

to wait for the better option. However, 5 + δV > 7 + δW holds so that the stochastic cooperation
continues to be an equilibrium behavior.

4McAdams (2007) considers volatility in the stage game payoffs with a fixed outside payoff. The
volatility in his model is not a perturbation but a state-dependent in-game payoffs to see how future
in the game affects the current incentives.

5A similar argument is noted in Mailath and Samuelson (2006), p.176-177.
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payoff of a non-cooperative action. The difficulty to cooperate means that stopping

the game is more beneficial, and hence she can take that option to increase the on-path

payoff, i.e., the incentive to follow the equilibrium strategy. Therefore lower discount

factors are sufficient to sustain the equilibrium than the ones under the unique option.

In summary, we have shown that there are perturbations that can increase the value

of repeated cooperation, and this occurs naturally in the context of outside options in

endogenously repeated games. Our model fits to many economic situations such as

employment relationships and repeat purchase situations. Therefore perturbations of

outside options should be carefully treated in those applications.

The outline of the paper is as follows. In Section 2, we formulate the basic one-

sided outside option model. In Section 3, we first analyze the benchmark model of

single-deterministic option in Section 3.1. The main analysis of the paper is Sections

3.2 and 3.3, where stochastic option model is analyzed and the effect of the mean and

spread of options are derived. In Section 4, we consider two important extensions of

continuum of outside options and two-sided outside options. Section 5 concludes the

paper.

2 One-sided Outside-option Model

Consider a two-player dynamic game as follows. Time is discrete and denoted as

t = 1, 2, . . . but the game continues endogenously. At the beginning of period t =

1, 2, . . . as long as the game continues, two players, called Player 1 and Player 2,

simultaneously choose one of the actions from the set {C,D} of the Prisoner’s Dilemma.

The action C is interpreted as a cooperative action and the action D is interpreted

as a defective action. We denote the symmetric payoffs associated with each action

profile as6: u(C,C) = c, u(C,D) = `, u(D,C) = g, u(D,D) = d with the ordering

g > c > d > ` and 2c > g + `. See Table 2. The latter inequality implies that (C,C)

is efficient among correlated action profiles.

After observing this period’s action profile, an outside option becomes available to

Player 1. The game continues to the next period if and only if Player 1 does not take

an outside option. Each player maximizes the total expected discounted payoff7 with

6The first coordinate is the player’s own action, and the second coordinate is the opponent’s action.
7Alternatively one can assume that the players maximize the average payoffs without changing the

qualitative results.
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P1 \ P2 C D
C c, c `, g
D g, ` d, d

Table 2: General Prisoner’s Dilemma
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Figure 1: Outline of the Single Option Game

a common discount factor δ ∈ (0, 1).

The value of an option is of the form x/(1−δ) and there can be multiple values of x

among which one option becomes available at the end of each period. An interpretation

of this formulation is that the same payoff {x, x, . . .} obtains forever after the game

ends. We identify an outside option by the average payoff x.

Player 2 receives payoff only from the Prisoner’s Dilemma as long as the game

continues and Player 2 does not have the ability to end the game, as in the ordinary

repeated games. Let us also assume that d = 0 which implies that Player 2’s “outside

payoff” 0 is not better than the payoff from (D,D). This simplifies our analysis by

making Player 2’s deviation not relevant. (To be precise, the qualitative result does

not change as long as Player 2’s outside payoff is not greater than Player 1’s average

outside option.) Figure 1 shows the outline of the dynamic game when there is a single

outside option v/(1 − δ) for Player 1 in any period.

If Player 1 takes an outside option v/(1 − δ) at the end of T -th period, her total

payoff is
T∑

t=1

δt−1u(a(t)) + δT v

1 − δ
,
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while Player 2’s total payoff is
T∑

t=1

δt−1u(a(t)),

where a(t) is the action profile in t-th period of the repeated Prisoner’s Dilemma.

We assume that all actions are observable to the players. Therefore, in period t = 2,

players can base their actions on the history of past action profiles. The game is of

complete information. As the equilibrium concept, we use subgame perfect equilibrium

(SPE henceforth).

There are many economic situations that fit into this model. For example, we can

interpret the model as a buyer-seller model such that Player 1 is a buyer, Player 2 is a

seller, C is an honest action in transactions and D is a dishonest action. We can also

interpret the model as an employment relationship such that Player 1 is a worker and

Player 2 is a firm.

3 Deterministic vs. Stochastic Outside Options

We investigate the range of δ in which repeated mutual cooperation of (C,C) is sus-

tained as long as possible, under a variety of structures of the outside options. If

the maximal equilibrium punishment does not sustain the on-path action profile, no

other punishment would, by the same logic as the optimal penal code in Abreu (1988).

Therefore, without loss of generality we consider the following type of strategy com-

binations, which we call “simple trigger strategy” combinations. Note that Player 1’s

optimal exit strategy varies depending on the structure of outside options.

Cooperation phase: If the history is empty or does not have D, play (C,C) and

Player 1 uses an optimal exit strategy given that (C,C) is repeated as long as the

game continues.

Punishment phase: If the history contains D, play (D,D) and Player 1 uses an

optimal exit strategy given that (D,D) is repeated as long as the game continues.

Let us justify our focus on (C,C) on the play path in three ways. First, under

some circumstances, we cannot lower the minimum discount factor δ by including

other action profiles in the play path. For example, we may want to include (D,C)

occasionally to give Player 1 more incentive to follow the strategy. However, if the

payoff of Player 2 is too low under (D,C), then Player 2’s incentive to play the strategy

7



increases the necessary δ. Such parameter range is characterized in Appendix A of

Fujiwara-Greve and Yasuda (2009). The motivating example in the Introduction is in

fact such a case. Moreover when we consider two-sided outside options (see Section

4.1), clearly an asymmetric action profile would make it more difficult to sustain.

Second, our interest is how the structure of outside options affects the lower bound,

not the absolute value of the lower bound. The qualitative results such as the mean

effect and the perturbation effect (Section 3.3) do not depend on the focus on (C,C).

For example, by including (D,C), the value of the play path for Player 1 increases so

that her minimum discount factor decreases, but still there is a sufficient size of spread

between the outside options that reduces the discount factor further. Therefore the

conclusion that perturbation reduces the minimum discount factor is valid.

Third, the pure action profile (C,C) has a clear meaning in economics, for example,

honest transactions, contribution to public good and absence of moral hazard. Then,

it is an important class of strategies to be analyzed.

3.1. Single Deterministic Option Case

As the benchmark, we first consider the case of a unique outside option v for Player

1. That is, at the end of each period, the same option becomes available, which gives

v/(1 − δ) in total after the exit (Figure 1). We assume that d < v < c, since this is

the only interesting case.8 Under this assumption, the optimal exit strategy of Player

1 in the cooperation phase is never to exit and the one in the punishment phase is to

take the option at the first opportunity. Therefore, the play path of the simple trigger

strategy combination is the eternal cooperation. Let us find the range of δ that makes

the simple trigger strategy with the eternal cooperation a SPE.

Recall that in the ordinary repeated Prisoner’s Dilemma with discounting, the

eternal cooperation is sustained by the simple trigger strategy without the exit option

if and only if

c

1 − δ
= g +

δd

1 − δ

⇐⇒ δ = g − c

g − d
=: δ.

In the presence of the outside option v, Player 1 does not deviate in the cooperation

8If v = c, then Player 1 would never cooperate since she will exit immediately. If v 5 d, then the
game is effectively a repeated game since even in the punishment phase Player 1 would not exit.
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phase if and only if

c

1 − δ
= g +

δv

1 − δ
(1)

⇐⇒ δ = g − c

g − v
=: δD

1 (v), (2)

and Player 2 does not deviate in the cooperation phase if and only if

c

1 − δ
= g ⇐⇒ δ = g − c

g
=: δD

2 .

Let δD(v) = max{δD
1 (v), δD

2 }. Then the simple trigger strategy combination is

a SPE if and only if δ = δD(v). Moreover, v > d implies that δD
1 (v) > δ, and

d = 0 implies that δD
2 5 δ. Hence δD(v) = δD

1 (v) > δ. This means that, for any

δ ∈ [δ, δD(v)), the existence of an outside option, greater than the mutual defection

payoff d, makes the eternal cooperation impossible, while it was possible if the game

were an ordinary repeated Prisoner’s Dilemma. It is also easy to see that δD(v) is

increasing in v, implying that better outside option makes it harder to cooperate.

Since limv→c δD(v) = 1, the range of δ that sustains the eternal cooperation shrinks to

the empty set, as the outside option approaches to c.

Proposition 1. For any v ∈ (d, c), the eternal cooperation is sustained as the outcome

of a SPE if and only if δ = δD(v) > δ. Hence, for any δ ∈ [δ, δD(v)), the eternal

cooperation cannot be sustained in the outside option model, while it is sustainable in

the ordinary repeated Prisoner’s Dilemma.

In addition, Fujiwara-Greve and Yasuda (2009) shows that if the value of the outside

option fluctuates over time but is deterministic, then the eternal cooperation falls apart

by backward induction if there is a (known) period in which the outside option value

exceeds the inverse of δD(v).

3.2. Binary Stochastic Options

Let us turn to stochastic outside options. The randomness can be interpreted

several ways, such as subjective uncertainty, external perturbation, or a draw from a

distribution of options. To make a comparison with the single option model, we fix the

mean of the outside options as v ∈ (d, c) throughout this section.

The stochasticity of the options changes both the value of cooperation phase and

the value of the punishment phase so that in addition to the eternal cooperation and

9
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Figure 2: Outline of the Binary Stochastic Option Game

no cooperation, the stochastic cooperation (cooperation until a stochastic end of the

game) may become the play path. Then it is possible that the volatility of the payoffs

changes the on-path play from no cooperation to the stochastic cooperation, as we

discussed in Introduction.

Even though we fix the mean of the outside options, there are many ways to formu-

late a stochastic distribution of binary options. We focus on a class of binary options

such that x/(1 − δ) and (x − ε)/(1 − δ) are the two possible values that realize with

probability p and 1 − p respectively. This formulation allows us to vary the mean and

the spread ε of the options independently to see their effects on cooperation.9 The

example in the Introduction is a special case where p = 0.5, ε = 2α and v = x − ε
2
.

The outline of the new dynamic game is depicted in Figure 2.

Note that v = px + (1 − p)(x − ε) implies that

x(v, ε) = v + ε(1 − p).

Thus, when the spread ε changes, the option values must change accordingly to keep

the mean as v. To simplify the notation, we often suppress the parameters and write

x when there is no danger of confusion.

We first derive optimal exit strategies for Player 1, when repeated (C,C) or (D,D)

is expected as long as the game continues. First, suppose that (C,C) is expected as

long as the game continues. If Player 1 takes any of the options to quit immediately,

9At the end of Section 3.3, we briefly discuss an alternative formulation of the binary stochastic
options and robustness of the results. Fujiwara-Greve and Yasuda (2009) analyzes the alternative
formulation.
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the expected continuation payoff is p x
1−δ

+ (1 − p)x−ε
1−δ

= v
1−δ

, which is less than c
1−δ

by

the assumption. Hence taking any outside option is not an optimal exit strategy when

(C,C) is expected as long as the game continues.

It remains to clarify when not taking any option is better than taking only the good

option x. Let V be the continuation payoff measured right before an option realizes,

when Player 1 plans to take only x and stays in the game when the lower option is

realized. It satisfies the following recursive equation.

V = p
x

1 − δ
+ (1 − p)

[
c + δV

]
.

To explain, the first term is the total discounted payoff when the better option realizes,

which occurs with probability p. The second term is the total discounted payoff when

the worse option realizes, because in that case Player 1 stays in the game, receives c in

the next period and then faces the same situation as now.

V can be explicitly solved as

V (v, ε) =
1

1 − (1 − p)δ

[
p

x

1 − δ
+ (1 − p)c

]
. (3)

We made clear that V depends on (v, ε), since x depends on (v, ε).

Remark 1. For any δ ∈ (0, 1) and any p ∈ (0, 1),

c

1 − δ
= V (v, ε) ⇐⇒ {1 − (1 − p)δ}c = (1 − δ)

[
p

x

1 − δ
+ (1 − p)c

]
⇐⇒ {1 − (1 − p)δ − (1 − δ)(1 − p)}c = px

⇐⇒ c = x. (4)

Therefore, in ex ante values, rejecting any option (and getting c/(1 − δ)) in the

cooperation phase is optimal if and only if c = x.

Note that the optimization problem after a realization of an option gives exactly the

same condition. After a realization, Player 1 compares taking the realized option with

the (ex ante) continuation payoff in the future, which is either c/(1− δ) or c+ δV (v, ε).

Thus, Player 1 facing a realized option of x compares x
1−δ

with max{ c
1−δ

, c + δV (v, ε)}.
If x 5 c, then x

1−δ
5 c

1−δ
= max{ c

1−δ
, c + δV (v, ε)} by Remark 1. Thus she would

not take x. If x > c, then the following Remark 2 shows that x
1−δ

> c + δV (v, ε) =

max{ c
1−δ

, c + δV (v, ε)}. Thus she should take x now.
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Remark 2. For any δ ∈ (0, 1) and any p ∈ (0, 1),

c + δV (v, ε) − x

1 − δ

= c + δp
x

1 − δ
+ δ(1 − p){c + δV (v, ε)} − {x + δp

x

1 − δ
+ δ(1 − p)

x

1 − δ
}

= (c − x) + δ(1 − p){c + δV (v, ε) − x

1 − δ
}.

Therefore, c + δV (v, ε) = x
1−δ

⇐⇒ c = x.

By the formulation, x− ε = v − εp < c. Hence after a realization of x− ε, Player 1

would not take the low option.

In summary we have the following characterization of the optimal exit strategy in

the cooperation phase.

Lemma 1. For any ε > 0, when (C,C) is expected as long as the game continues, not

taking any outside option is the optimal exit strategy for Player 1 if c = x, and taking

only the good option x is optimal otherwise.

Analogously, suppose that repeated (D,D) is expected as long as the game contin-

ues. Clearly, the optimal exit strategy is either to take both options or to wait for the

better option, since rejecting both options gives her only d/(1 − δ), which is strictly

worse than taking both options. Let W be the continuation payoff measured right

before an option realizes and when Player 1 plans to take only the better option x. By

an analogous argument as for V , W satisfies

W = p
x

1 − δ
+ (1 − p)

[
d + δW

]
.

Thus,

W (v, ε) =
1

1 − (1 − p)δ

[
p

x

1 − δ
+ (1 − p)d

]
. (5)

Waiting for the good option x is better than taking any option to quit immediately if

and only if

W (v, ε) = v

1 − δ
⇐⇒ (1 − δ)

[
p

x

1 − δ
+ (1 − p)d

]
= {1 − (1 − p)δ}v

⇐⇒ δ(1 − p)(v − d) = v − d − p{x − d}

⇐⇒ δ = v − d − εp

v − d
, (6)

where the last equivalence uses x = v+ε(1−p). Let δP (v, ε) = v−d−εp
v−d

. The superscript

P stands for the punishment phase. In sum, we have the following characterization of

the optimal exit strategy in the punishment phase.
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Lemma 2. For any ε > 0, when (D,D) is expected as long as the game continues,

taking only the good outside option of x is the optimal exit strategy for Player 1 if

δ = max{δP (v, ε), 0}, and taking any outside option is optimal otherwise.

We now find the lower bound of the discount factor δ to sustain repeated mutual

cooperation as long as possible, using the simple trigger strategy combination. Lemma

1 implies that if the good option x does not exceed the mutual cooperation payoff, i.e.,

c = x, then the eternal cooperation is possible, while if x > c, then only the stochastic

cooperation is possible. We show that in the former case, the lower bound (denoted

as δE(v, ε)) of discount factors that sustain the eternal cooperation is never lower than

δD(v), while in the latter case the lower bound (denoted as δS(v, ε)) can be less than

δD(v). Below we give graphical explanations, and formal proofs of propositions are in

the Appendix.

Proposition 2. Take any ε ∈ (0, c−v
1−p

] so that c = x. Let δcW (v, ε) be the solution to

c

1 − δ
= g + δW (v, ε).

The eternal cooperation is sustained if and only if δ is not less than

δE(v, ε) := max{δD(v), δcW (v, ε)}.

Since δE(v, ε) = δD(v), the eternal cooperation is not easier under perturbation than

under the single option v.

Proof: See Appendix.

The intuition is as follows. Since c = x, the optimal value of the cooperation phase

is c/(1 − δ) by Lemma 1. The value of the optimal one-shot deviation is

max{g + δ
v

1 − δ
, g + δW (v, ε)}.

As δ increases from 0 to 1, both of these values increase, but the value of the cooperation

phase is more convex than the optimal one-shot deviation value. (See Figure 3, which

is drawn under the parameter values (g, c, d, `, v, p, ε) = (10, 8, 3, 2, 5, 0.5, 3.5).)

Recall that δD(v) equalizes c
1−δ

and g + δ v
1−δ

. We have two cases; wether δD(v) 5
δP (v, ε) or not. If δD(v) 5 δP (v, ε), then the optimal cooperation value c/(1 − δ)

intersects with the optimal deviation value when the latter is g + δv/(1 − δ), so that

13
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Player 1 follows the eternal cooperation if and only if δ = δD(v). On the other hand, if

δP (v, ε) < δD(v), then c/(1−δ) must exceed g+δW (v, ε) in order to induce Player 1 to

follow the eternal cooperation, as shown in Figure 3. The lower bound to the discount

factors in this case is δcW (v, ε).

In summary, when c = x, the eternal cooperation is sustained10 if and only if

δ = max{δD(v), δcW (v, ε)} =: δE(v, ε)

and this lower bound is never smaller than δD(v).

Two remarks are in order. First, it is possible to sustain the stochastic cooperation

(to cooperate until x realizes) under c = x as well, but higher δ is needed because the

value of the stochastic cooperation is smaller than c/(1− δ). Second, δD(v) 5 δP (v, ε)

if and only if εp 5 (v − d)(c − v)/(g − v). This means that as ε becomes larger,

δP (v, ε) = δD(v) is violated so that the lower bound δE(v, ε) becomes δcW (v, ε) which is

strictly greater than δD(v). That is, greater spread (more volatility) makes the eternal

cooperation more difficult. This perturbation effect is extensively studied in Section

3.3.

Next, we consider even greater ε so that x > c. In this case only the stochastic

cooperation can be sustained.

10To be precise, Player 2’s deviations must be checked. This is done in the formal proof.
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Proposition 3. Take any ε > c−v
1−p

so that x > c. Let δV (v, ε) be the solution to

c + δV (v, ε) = g + δ
v

1 − δ
.

Then the stochastic cooperation is sustained if and only if δ is not less than

δS(v, ε) := max{δV (v, ε),
g − c

(1 − p)(g − d)
}.

Moreover, δS(v, ε) < δD(v) if and only if v > pg + (1 − p)d. That is, when g is

sufficiently small, cooperation becomes easier under perturbation than under the single

option v.

Proof: See Appendix.

The intuition is as follows. Notice that when x > c, (4) implies that, for any δ > 0,

c + δV (v, ε) >
c

1 − δ
. (7)

That is, as Figure 4 shows,11 the value of stochastic cooperation is uniformly greater

than the value of eternal cooperation. There are two possibilities of how c + δV (v, ε)

intersects with the optimal deviation value, max{g+δW (v, ε), g+δ v
1−δ

}. If c+δV (v, ε)

11The parameter values are (g, c, d, `, v, p, ε) = (7, 5.5, 1, 0.1, 5, 0.5, 7).
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intersects with the optimal deviation value when the latter is g + δ v
1−δ

, the intersection

is δV (v, ε). Note also that (7) implies that δV (v, ε) < δD(v).

If c + δV (v, ε) intersects with the optimal deviation value when the latter is g +

δW (v, ε), the intersection is computed as follows. From (3) and (5),

c + δV (v, ε) = g + δW (v, ε) ⇐⇒ δ =
g − c

(1 − p)(g − d)
. (8)

Therefore, the stochastic cooperation is sustained if and only if

δ = max{δV (v, ε),
g − c

(1 − p)(g − d)
} =: δS(v, ε).

Since δV (v, ε) < δD(v), the lower bound δS(v, ε) is strictly smaller than δD(v) if and

only if g−c
(1−p)(g−d)

< δD(v) which is equivalent to v > pg + (1 − p)d.

In words, when the one-shot deviation gain g is not too large, even though δ is

not sufficient for cooperation under the unique option v, stochastic cooperation can be

sustained under perturbation. This is because the increase in the value of stochastic

cooperation, c+δV (v, ε) as compared to c/(1−δ), is greater than that of the deviation

value, g + δW (v, ε) as compared to g + δv/(1 − δ).

Note, however, that δS(v, ε) = g−c
(1−p)(g−d)

> g−c
g−d

= δ for any p > 0. Therefore,

mutual cooperation is still more difficult than in the ordinary repeated game. The

“locked-in” feature of repeated games is a strong device to enforce cooperation.

3.3. Mean Effect and Perturbation Effect

In this subsection we analyze the effect of changes in the mean v and the spread

ε. The increase of the mean v increases the option value of the punishment phase

more than that of the cooperation phase. Therefore the increase of the mean makes

cooperation more difficult, just like in the unique option case.

Corollary 1. Given ε, δE(v, ε) is increasing in v, and δS(v, ε) is non-decreasing in

v. That is, as the mean of the outside options increases, cooperation becomes more

difficult.

Proof : See Appendix.

By contrast, the perturbation effect of ε is more complex, since it only affects the

value when Player 1 wants to wait for the good option, i.e., given δ and v, the increase
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Figure 5: Perturbation Effect

of ε increases V (v, ε) and W (v, ε) only. As Figure 5 shows, depending on whether

v > pg + (1 − p)d or not, the perturbation effect of ε is different. It is easy to see that

v > pg + (1 − p)d implies that δD(v) < δP (v, ε). In this case, greater spread (larger

perturbation) is good for cooperation, which is depicted in Figure 5(a).

Corollary 2. Assume that v > pg + (1 − p)d. For any ε > 0, the lower bound to

the discount factors that sustain eternal/stochastic cooperation is non-increasing in ε.

That is, as the spread of the option values increases, cooperation becomes weakly easier.

Proof : See Appendix.

The intuition is as follows. Let us start with small ε 5 c−v
1−p

. In this region either

eternal cooperation or no cooperation is sustained. Since v > pg+(1−p)d implies that

δD(v) < δP (v, ε), the relevant lower bound is δE(v, ε) = δD(v), which is constant over

ε. As ε increases so that ε > c−v
1−p

holds, i.e., x > c, either stochastic cooperation or no

cooperation is sustained. For medium value of ε, the optimal deviation value is g+δ v
1−δ

and thus δV (v, ε) is the lower bound. It is easy to see that δV (v, ε) is decreasing in ε

since the on-path value c + δV (v, ε) is increasing while the deviation value g + δ v
1−δ

is

constant. For large value of ε, the optimal deviation value is g + δW (v, ε) so that the

constant g−c
(1−p)(g−d)

is the lower bound.

As we look at Figure 5(a) horizontally, we see that given a mid-range of δ, no coop-

eration becomes stochastic cooperation as ε increases. Thus for this case cooperation

is enhanced by the perturbation.
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By contrast, when v 5 pg + (1 − p)d, then δE(v, ε) = δD(v) for small ε < (v−d)(c−v)
p(g−v)

and δE(v, ε) = δcW (v, ε) for mid-range ε ∈ [ (v−d)(c−v)
p(g−v)

, c−v
1−p

). As ε increases further, the

lower bound becomes g−c
(1−p)(g−d)

. See Figure 5(b). Thus in this case the lower bound is

non-decreasing in ε, i.e., perturbation is bad for cooperation.

The ordinary repeated game literature looks only at the vertical axis of Figure 5,

where ε = 0, and the case of v = d. By adding the dimension of ε, we enlarged the

scope of the analysis and found the positive effect of payoff perturbation.

Our result is different from the effect of stochastic discount factor (Dal Bó, 2007),

which affects both the cooperation phase value and the punishment phase value, and

that of stochastic payoffs in Rotemberg and Saloner (1986). As we discussed in Intro-

duction, their results can be interpreted as the eternal cooperation being more difficult

under volatility. We have provided a third source of volatility via the outside options

and expanded the notion of “repeated cooperation” to include not only the eternal

cooperation but also the stochastic cooperation. Then we can show that in some cases

cooperation is enhanced under more volatility.

Yasuda and Fujiwara-Greve (2009) shows a similar result for ordinary repeated

games with perturbed payoffs. Essentially, if the volatility of the payoffs takes the form

that stopping cooperation in that period is beneficial, then players can still selectively

cooperate in some periods, even if they cannot cooperate under no perturbation. If the

stage game allows this, the lower bound to the discount factors is less than the one

without perturbation.

Finally we comment on the effect of p. Since p changes both the probability of the

good option x = v+ε(1−p) as well as its value, the effect of p is clearly not monotonic.

The most interesting case is when p is very small so that the stochastic cooperation is

almost the eternal cooperation. The relevant lower bound is

δS(v, ε) := max{δV (v, ε),
g − c

(1 − p)(g − d)
}.

As p converges to 0, g−c
(1−p)(g−d)

converges to δ, but δV (v, ε) converges to δD(v). Therefore,

when the probability of exit by taking the good option becomes negligible, the model

converges to the unique option case.12

12This is in fact dependent on our formulation of the stochastic options. In Fujiwara-Greve and
Yasuda (2009), we give an alternative formulation of binary stochastic options such that the good
option is defind as x = v−v−

p + v− where v− < v is a fixed value of the low option. In this case, as p
converges to 0, the model converges to the ordinary repeated game because in both the cooperation
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4 Extensions

4.1. Continuum of Outside Options

The binary distribution model illustrates well the essence of the effect of stochastic

outside options on the cooperation within the repeated game. However, it is of some

theoretical interest how the model and results extend to a case with a continuum

of outside options, which is more standard in some economic models such as search

models. We show that the stochastic cooperation is sustained under lower discount

factors than those of the single deterministic option, even under a continuum of outside

options.

Assume that Player 1 has a continuum of outside options with the support [v, v].

That is, at the end of each period, an option x ∈ [v, v] realizes for Player 1 and if

she takes this option, she receives the total payoff of x
1−δ

after exit. Let F be the

(differentiable) cumulative distribution function of the outside options and f be its

density function. Assume, as before, that the mean outside option v :=
∫ v

v
xf(x)dx is

strictly between d and c.

If Player 1 takes an option of value x, then she would also take any option greater

than x. Hence the optimal exit strategy is a reservation strategy: Player 1 takes any

outside option not less than a certain level r, where r is called the reservation level.

Suppose that as long as Player 1 is in the game, she can receive u from the Prisoner’s

Dilemma, where u can be either c or d. Let U(u, r) be the value, at the end of a period

before a stochastic outside option realizes, and when Player 1 takes any option not less

than r ∈ [v, v]. It satisfies the following recursive equation:

U(u, r) =

∫ v

r

x

1 − δ
f(x)dx + F (r){u + δU(u, r)}. (9)

By differentiation of (9) with respect to r, we have

∂U(u, r)

∂r
= − r

1 − δ
f(r) + f(r){u + δU(u, r)} + δF (r)

∂U(u, r)

∂r
,

⇐⇒ ∂U(u, r)

∂r
=

f(r)

1 − δF (r)

[
u − r

1 − δ
+ δU(u, r)

]
.

phase and the punishment phase Player 1 waits for the good option but it hardly arrives. Therefore
the lower bound converges to δ. Note, however, that the effect of v and ε are robust under this
formulation.
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The optimal reservation level, denoted as r∗(u, δ), is the solution to ∂U(u,r)
∂r

= 0 (since

the second order condition holds), that is,

r∗(u, δ)

1 − δ
= u + δU(u, r∗(u, δ)). (10)

This means that the optimal reservation level of the outside options is exactly where

Player 1 is indifferent between taking it and not taking it. (9) and (10) imply that

r∗(u, δ)

1 − δ
= u + δU(u, r∗(u, δ))

⇐⇒ r∗(u, δ) = (1 − δ)u + δ(1 − δ)
{∫ v

r∗(u,δ)

x

1 − δ
f(x)dx + F (r∗(u, δ))

r∗(u, δ)

1 − δ

}
.

Hence, for any δ ∈ (0, 1) and any u = c, d, the optimal reservation level r∗(u, δ) is the

solution to the following equation:

r = (1 − δ)u + δ

∫ v

r

xf(x)dx + δF (r)r. (11)

By differentiation it is straightforward to show that the RHS of (11) is a monotone

increasing function of r, taking value from (1 − δ)u + δv to (1 − δ)u + δv. Figure 6

illustrates this property. Therefore, in the cooperation phase where u = c, the optimal

reservation level r∗(c, δ) is less than v if and only if (1−δ)c+δv > v, which is equivalent

to v > c.

20



Lemma 3. When (C,C) is expected as long as the game continues, the optimal exit

strategy for Player 1 is to not to take any outside option if c = v, and to take any

outside option not less than r∗(c, δ) otherwise.

In the following we focus on the stochastic cooperation, i.e., we assume that v > c

and give a sufficient condition under which the lower bound of the discount factors

that sustain the stochastic cooperation is less than δD(v).

The equation (11) implies that in the punishment phase when u = d, the optimal

reservation level is v (that is, it is optimal to exit by taking any option) if and only if

v = (1 − δ)d + δ

∫ v

v

xf(x)dx + δF (v)v = (1 − δ)d + δv,

which is equivalent to

δ 5 v − d

v − d
.

This corresponds to δ 5 δP (v, ε) for the binary case. Note that

δD(v) 5 v − d

v − d
⇐⇒ (v − d)(g − v) = (g − c)(v − d). (12)

Therefore, if (12) holds, then the on-path value c + δU(c, r∗(c, δ)) (which is strictly

greater than c
1−δ

under the assumption v > c) intersects with the one-shot deviation

value when this is g + δ v
1−δ

. Hence the lower bound of the discount factors that deter

Player 1’s deviation is strictly less than δD(v). In addition, if we impose an extra

condition, Player 2 does not deviate either.

Proposition 4. Assume that v > c, (12), and v > {1 − F (c)}g. Let δF be the lower

bound of δ that sustains the stochastic cooperation under the continuum of outside

options with the distribution F . Then δF < δD(v).

Proof: See Appendix.

We have shown that there is a case of continuum outside options in which the

stochastic cooperation is sustained under lower discount factors than those under the

unique option.

4.2 Two-sided outside options

Let us extend the model so that Player 2 also has non-negligible outside options.

Then there are two new aspects to be clarified. First, the rule of termination must
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P1 \ P2
Stay Continue
Exit End

P1 \ P2 Stay Exit
Stay Continue End
Exit End End

3(a): One-sided Option 3(b): Two-sided Option
for Player 1 with Unilateral Ending Rule

Table 3: Game Continuation Patterns

be carefully specified. Second, under stochastic options, the optimal exit decision

may become a coordination game, because if the other player is waiting for the good

option, one may also wait for one and vice versa, even under independent distributions.

Otherwise the analysis is similar to the one-sided option model.

When both players can choose to take outside options, the rule of termination of a

repeated game becomes relevant. The unilateral ending rule assumed in the one-sided

option model (Table 3(a)) has a specific meaning in the two-sided option model that

the repeated game ends if and only if at least one player chooses to exit (Table 3(b)).

There is an intermediate case of two-sided option model in which both players must

agree to end the game, but in that case it is straightforward to prove that any equilib-

rium outcome of ordinary repeated game can be sustained.13 Therefore the essentially

different models from ordinary repeated games are the one-sided option model and two-

sided option model with the unilateral ending rule. Moreover, the unilateral ending

rule is the most commonly analyzed rule (e.g., Gosh and Ray, 1996; Kranton, 1996a,b;

Fujiwara-Greve, 2002 and Fujiwara-Greve and Okuno-Fujiwara, 2009) and describes

well situations such as joint ventures and lender-borrower relationships.

The unique option case is rather simple. Let v1, v2 ∈ (d, c) be the outside options

for Player 1 and Player 2 respectively. By the same argument as in Section 3.1, Player

i would not play C if δ < δD
i (vi) =: g−c

g−vi
. The range of discount factors that sustains

mutual cooperation is δ = max{δD
1 (v1), δ

D
2 (v2)}. Hence the lower bound is not less

than the one when only one of the players has a unique option vi.

13For example, repeated (C,C) can be achieved by the following strategy combination if two players
must agree to end the game: Play C and do not take outside options as long as no one played D.
If someone played D in the past, play D and do not take outside options. Since one player cannot
unilaterally end the game to escape, the strategy combination is a subgame perfect equilibrium if and
only if the usual grim-trigger strategy combination is a subgame perfect equilibrium in the ordinary
repeated Prisoner’s Dilemma.
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P1 \ P2 Stay Take only x
Stay c

1−δ
, c

1−δ
c + δV ′′, c + δV (v, ε)

Take only x c + δV (v, ε), c + δV ′′ c + δV ′, c + δV ′

Table 4: Payoff Combinations in the Cooperation Phase

Let us now turn to the stochastic options, where Player 1 and Player 2 independently

draw outside options from the same i.i.d. distribution such that x/(1− δ) obtains with

probability p and (x − ε)/(1 − δ) obtains with probability (1 − p). The symmetry

is assumed to make the comparison easy with the one-sided option case. Under the

independent draws, a player may take an outside option to terminate the game, even

when the other player does not want to take own option, so that the game ends with

a different probability and the payoff becomes different from the one in the one-sided

outside option case.

First, consider the cooperation phase. There are two candidates for an optimal exit

strategy given that (C,C) continues as long as someone terminates the game: not to

take any option (“stay”) or take only the better option x (“take only x”). Depending

on the other player’s exit strategy, the value of these exit strategies are different. If

the other player is not taking any option, you are as if Player 1 in the one-sided option

model. Hence not taking any option gives you c/(1− δ), while taking only x gives you

c+ δV (v, ε). If both players take x but reject x− ε, the ex ante continuation value just

before the option realizes (denoted as V ′) satisfies the following recursive equation.

V ′ = p
x

1 − δ
+ p(1 − p)

x − ε

1 − δ
+ (1 − p)2(c + δV ′). (13)

This is because with probability p(1 − p), one’s option turns out to be x − ε but the

partner’s turned out to be x, in which case the game ends and one ends up with the

low option. Similarly, let V ′′ be the ex ante continuation value just before the option

realizes, when you do not take any option but your partner takes x. It satisfies

V ′′ = p
v

1 − δ
+ (1 − p)(c + δV ′′). (14)

To explain, with probability p, your partner terminates the game by taking x but in

that case you receive on average v/(1− δ). With probability 1− p the game continues.

The total expected payoffs of the two players, of various combinations of exit strate-

gies, are summarized in Table 4. Lemma 4 (b) shows when x > c, both c + δV (v, ε) >

23



P1 \ P2 Exit Take only x
Exit v

1−δ
, v

1−δ
v

1−δ
, v

1−δ

Take only x v
1−δ

, v
1−δ

W ′, W ′

Table 5: Continuation Value Combinations in the Punishment Phase

c/(1 − δ) and c + δV ′ > c + δV ′′ hold so that there is a unique equilibrium of (Take

only x, Take only x).

By contrast, if c = x, then there can be two equilibria of (Stay, Stay) and (Take

only x, Take only x) or a unique equilibrium of (Stay, Stay), depending on whether

V ′ = V ′′ or not. This is a new feature of the two-sided option model that the exit

strategies may constitute a coordination game.

Lemma 4. (a) For any (δ, p, v, ε), V (v, ε) > V ′ and V (v, ε) > V ′′.

(b) For any (δ, p, v, ε), V ′ = V ′′ if and only if x − c + δp(1 − p) ε
1−δ

= 0.

Proof: See Appendix.

Although it is possible to have two equilibria when c = x, Lemma 4 (a) and c/(1−
δ) = c+ δV (v, ε) together imply that (Stay, Stay) payoff dominates (Take only x, Take

only x). Therefore, we focus on the eternal cooperation for c = x and the stochastic

cooperation for c < x, as in the one-sided option model.

Next, we clarify equilibria in the punishment phase. When (D,D) is expected until

someone terminates the game, there are two possible optimal exit strategies: to take

only the good option x or to take any option to exit immediately. Let W ′ be the ex

ante continuation value just before an option realizes, when both players take only x.

It satisfies essentially the same recursive structure as V ′:

W ′ = p
x

1 − δ
+ p(1 − p)

x − ε

1 − δ
+ (1 − p)2(d + δW ′). (15)

If your partner exits immediately by taking any option, by the unilateral ending rule,

your choice of exit strategy is irrelevant and the continuation value is v/(1− δ). Thus,

in the subgames after a deviation, the continuation value comparison is simpler than

the cooperation phase, as Table 5 shows.

We can show that whether v/(1− δ) is greater than W ′ or not is again determined

by the same critical value of δP (v, ε), which equalizes W (v, ε) with v/(1 − δ). (See

(6).) Moreover, the optimal deviation value is never greater than that of the one-sided

option model.
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Lemma 5. For any (v, ε), the one-shot deviation values are ordered as follows.

δ 5 δP (v, ε) ⇒ g + δ
v

1 − δ
= g + δW ′ = g + δW (v, ε);

δP (v, ε) 5 δ ⇒ g + δW (v, ε) = g + δW ′ = g + δ
v

1 − δ
.

Proof: See Appendix.

This means that, when δ 5 δP (v, ε), the optimal deviation value is the same across

the one-sided and two-sided option models, but, when δ = δP (v, ε), the optimal devia-

tion value is less under the two-sided options.

Therefore, when c = x so that the eternal cooperation is to be sustained, the

decrease of the punishment phase value makes the eternal cooperation easier in the

two-side option model, i.e., the lower bound δE2(v, ε) that sustains eternal cooperation

is never greater than δE(v, ε) for the one-sided option model. See Figure 7.14

By contrast, when x > c, so that the stochastic cooperation is to be sustained, both

the on-path value c + δV ′ and the punishment phase value, max{g + δW ′, g + δ v
1−δ

},
are reduced under the two-sided option model. Let δV ′

(v, ε) be the solution to

c + δV ′ = g + δ
v

1 − δ
.

14The parameter values are (g, c, d, `, v, p, ε) = (10, 7.7, 0.5, 0.1, 4, 0.5, 7).
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Then c + δV > c + δV ′ implies that δV (v, ε) < δV ′
(v, ε). On the other hand,

c + δV ′ = g + δW ′ ⇐⇒ δ = g − c

(1 − p)2(g − d)
>

g − c

(1 − p)(g − d)
.

Therefore, the lower bound δS2(v, ε) := max{δV ′
(v, ε), g−c

(1−p)2(g−d)
} that sustains stochas-

tic cooperation under the two-sided options is greater than δS(v, ε). (See Figure 8.15)

We can summarize the results for two-sided options as follows.

Proposition 5. Case 1: For ε 5 c−v
1−p

so that c = x. Let δE2(v, ε) be the lower bound

of the discount factors that sustain the eternal cooperation under two-sided outside

options. Then δE2(v, ε) 5 δE(v, ε).

Case 2: For ε > c−v
1−p

so that x > c. Let δS2(v, ε) be the lower bound of the discount

factors that sustain the stochastic cooperation under two-sided outside options. Then

δS2(v, ε) > δS(v, ε).

For the two-sided option model, we only need to check one player’s optimization,

which is analogous to the one in Propositions 2 and 3 and is explained above. Therefore

the proof is omitted.

Even if the realizations of outside options for two players are not completely inde-

pendent, as long as there is a positive probability that a player end up with the low

option, the same result follows. Essentially, the effect of perturbation is weakened rel-

ative to the one-sided case, because a player may not be able to wait for a good option

15The parameter combination is (g, c, d, `, v, p, ε) = (7, 6, 0.2, 0.1, 5, 1.5).
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when she wanted to, which reduces the value of options. The weaker effect of pertur-

bation is in fact two-fold: the eternal cooperation becomes easier and the stochastic

cooperation becomes more difficult than the one-sided option case.

5 Concluding Remarks

Our result can be summarized in three points. First, payoff perturbation (stochastic

outside options) may enhance cooperation, which is a new insight. In the literature of

ordinary repeated games, only infinitely-repeated cooperation has been analyzed and

thus payoff perturbation has negative effect, since perturbation increases the tempta-

tion to deviate at some point. However if we extend the notion of “repeated coop-

eration” to include stochastic repetition of cooperation and perturbation of outside

options is considered, a player may want to wait for a good option, which makes her

more patient.

Second, the effect of the mean and the spread of outside options are quite different.

The effect of the mean is monotone and negative in the sense that higher discount

factors are needed to sustain cooperation as the mean of the outside options increases.

By contrast, the effect of the spread between options is more complex, as shown in

Figure 5. For mid-range discount factors and when the deviation gain is not too large,

the increase of the spread between options enhances cooperation. Therefore, the option

structure is important, and “fixing the outside option as a single value” is not without

loss of generality.

Third, two-sided outside options weaken the effect of stochastic outside options.

The reason is as follows. If both players can end the game unilaterally, the game

ends more frequently and the option value is reduced, since the partner may end the

game when one is faced with a low option. This makes the cooperation easier if the

punishment phase payoff is reduced but more difficult if the cooperation phase payoff

is reduced.

Finally, let us mention future directions. Although the main concern in the present

paper is to analyze the sustainability of mutual cooperation under perturbations, it

should also be of interest to characterize the set of equilibrium payoffs. Especially,

comparative static of the equilibrium payoff sets with respect to the mean value and/or

the spread of the outside options has great importance. As we showed in Section 3.3,

increased volatility of ε can make Player 1’s cooperation easier, which implies that
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the set of equilibrium payoffs need not be monotonically decreasing (in the sense of set

inclusion) as the outside options increase. This non-monotonicity of equilibrium payoffs

may have significant implications to applications, for example in policy effects.16

In addition, we would like to point out that there is a wide scope of important appli-

cations of our model, for example, employment relationships, buyer-seller relationships

and marriages. An important implication from our result is that specifications of what

players may receive outside of the game, such as potential wage offers and reservation

utilities, can have significant effects on their in-game strategic incentives. This find-

ing stands in sharp contrast to the traditional modeling approach in dynamic games

and contracting where the outside structure of a game is often assumed to be fixed.

We believe that our model can provide meaningful insights and implications for many

applications.

APPENDIX: PROOFS

For notational simplicity, we abbreviate V (v, ε) and W (v, ε) as V and W except in

the proof of Corollary 1 and 2.

Proof of Proposition 2: Recall that

c

1 − δ
= g + δ

v

1 − δ
⇐⇒ δ = δD(v), (2)

g + δW = g + δ
v

1 − δ
⇐⇒ δ = δP (v, ε). (6)

We also show that the on-path value function c/(1 − δ) exceeds the deviation value

g + δW for any δ above some critical δ. By computation,

c

1 − δ
= g + δW = g + δ

p x
1−δ

+ (1 − p)d

1 − (1 − p)δ
,

⇐⇒ h(δ) := −δ2(1 − p)(g − d) + δ{(1 − p)(g − c) + g − px − (1 − p)d} − (g − c) = 0.

Notice that h is quadratic in δ, h(0) = −(g − c) < 0 and h(1) = p(c − x) = 0 by the

assumption. Therefore there exists δcW (v, ε) ∈ (0, 1] such that

c

1 − δ
= g + δW ⇐⇒ δ = δcW (v, ε). (16)

16There is a different non-monotonicity result. In a class of games called exhaustible resource games,
Dutta (1995) showed that the first-best outcome is sustainable under a mid-range discount factor but
not under high discount factors.
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Next we divide into two cases.

Case 1: 0 < ε 5 (v−d)(c−v)
(1−p)(g−v)

, i.e., δD(v) 5 δP (v, ε).

In this case, for any δ 5 δD(v), g + δ v
1−δ

= g + δW . Thus, as δ increases from 0

to 1, the on-path value c
1−δ

intersects with g + δW before it does with g + δ v
1−δ

, i.e.,

δcW (v, ε) 5 δD(v). Hence

c

1 − δ
= max{g + δW, g + δ

v

1 − δ
} ⇐⇒ δ = δD(v) = max{δD(v), δcW (v, ε)}.

Case 2: (v−d)(c−v)
(1−p)(g−v)

< ε, i.e., δP (v, ε) < δD(v).

In this case, when the on-path value c/(1 − δ) intersects with g + δ v
1−δ

(at δD(v)),

the optimal one-shot deviation value is in fact g+δW . Thus the on-path value function

intersects with the optimal one-shot deviation value max{g + δW, g + δ v
1−δ

} when the

latter is g + δW (see Figure 3), at δcW (v, ε). Therefore

c

1 − δ
= max{g + δW, g + δ

v

1 − δ
} ⇐⇒ δ = δcW (v, ε).

Note also that since g+δW > g+δ v
1−δ

at δ = δD(v) and since c
1−δ

is strictly increasing

in δ, δD(v) < δcW (v, ε) in this case.

Finally, Player 2’s deviation value changes depending on whether Player 1 exits

immediately or not after seeing a deviation. If Player 1 exits immediately, i.e., if

max{W, v
1−δ

} = v
1−δ

, Player 2’s deviation value is g + δ · 0.

If Player 1 waits for the good option in the punishment phase, i.e., if max{W, v
1−δ

} =

W , then Player 2’s deviation value is increased to

g + (1 − p)δd + (1 − p)2δ2d + · · · = g +
(1 − p)δd

1 − (1 − p)δ
.

In this case Player 2 does not deviate in the cooperation phase if and only if

c

1 − δ
= g + δ

(1 − p)d

1 − (1 − p)δ
. (17)

Notice that the RHS of (17) is strictly smaller than g + δW = g + δ
p x

1−δ
+(1−p)d

1−(1−p)δ
, since

x > 0.

Therefore, Player 1’s optimal deviation value max{g + δW, g + δ v
1−δ

} is always

greater than Player 2’ s deviation value and thus as long as Player 1 does not deviate,

Player 2 does not.
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Proof of Proposition 3: First, we show that there exists a unique δV (v, ε) ∈
(0, δD(v)) such that

δ = δV (v, ε) ⇐⇒ c + δV = g + δ
v

1 − δ
.

(See Figure 4.) Let

h′(δ) := (1 − δ){1 − (1 − p)δ}{c + δV − g − δ
v

1 − δ
}

= −(g − v)(1 − p)δ2 + δ{(1 − p)g + g − c + px − v)} − (g − c).

Then

c + δV = g + δ
v

1 − δ
⇐⇒ h′(δ) = 0.

Since h′(δ) is a concave, quadratic function of δ, h(0) = −(g − c) < 0, and h(1) =

p(x − v) > 0, there exists a unique δV (v, ε) ∈ (0, 1) such that h′(δ) = 0 if and only if

δ = δV (v, ε). To show that δV (v, ε) < δD(v), plug in δ = δD(v) into h′ and we get

h′(δD(v)) =
(g − c)p(x − c)

g − v
> 0,

by the assumption that x > c. Thus δD(v) > δV (v, ε).

Second, we show that Player 1 does not deviate for any δ = max{δV (v, ε), g−c
(1−p)(g−d)

}.
Recall that from (8), we have that

c + δV = g + δW ⇐⇒ δ = g − c

(1 − p)(g − d)
.

Similar to the proof of Proposition 2, when c+δV intersects with the optimal deviation

value max{g + δW, g + δ v
1−δ

} at δ 5 δP (v, ε), the latter is g + δ v
1−δ

and δV (v, ε) =
g−c

(1−p)(g−d)
. Then max{g + δW, g + δ v

1−δ
} = g + δ v

1−δ
implies that Player 1 does not

deviate if and only if δ = δV (v, ε). If c+ δV intersects with the optimal deviation value

at δ > δP (v, ε), the latter is g + δW and δV (v, ε) < g−c
(1−p)(g−d)

. Thus Player 1 does not

deviate if and only if δ = g−c
(1−p)(g−d)

in this case. (See Figure 4.)

Next, consider Player 2. Let V2 be Player 2’s continuation payoff before an option

for Player 1 realizes during the cooperation phase. Since Player 1 exits with probability

p, it satisfies

V2 = (1 − p){c + δV2} + p · 0.

Thus V2 = (1−p)c
1−(1−p)δ

and the on-path value for Player 2 is c + δV2 = c
1−(1−p)δ

.
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If he deviates, Player 1 exits immediately if v/(1 − δ) = W or equivalently δ 5
δP (v, ε), and Player 1 waits for the good option otherwise. Let W2 be the continuation

payoff during the punishment phase for Player 2, when Player 1 waits for the good

option. It satisfies

W2 = (1 − p){d + δW2} + p · 0,

so that W2 = (1− p)d/{1− (1− p)δ}. Hence the one-shot deviation value for Player 2

is {
g + δ · 0 if δ 5 δP (v, ε)
g + δW2 if δP (v, ε) 5 δ.

Since d = 0, it suffices to show that the lower bound of δ that satisfies

c + δV2 = g + δW2

is less than δD(v). Note that the payoff structure is similar for Player 2 and Player 1;

V2 − W2 = (1 − p){c + δV2} + p · 0 − (1 − p){d + δW2} − p · 0,

and

V − W = (1 − p){c + δV } + p · x

1 − δ
− (1 − p){d + δW} − p · x

1 − δ
.

Hence V2 − W2 = V − W and since

c + δV = g + δW ⇐⇒ δ = g − c

(1 − p)(g − d)
,

Player 2 does not deviate if and only if δ = g−c
(1−p)(g−d)

.

Therefore δS(v, ε) = max{δV (v, ε), g−c
(1−p)(g−d)

} is the lower bound of the discount

factor that sustains the stochastic cooperation. Finally, note that g−c
(1−p)(g−d)

< δD(v) if

and only if v > pg+(1−p)d. Thus δS(v, ε) < δD(v) if and only if v > pg+(1−p)d.

Proof of Corollary 1: When v is small so that x 5 c (i.e., the on-path value is

c/(1−δ)), only the deviation value max{g+δW (v, ε), g+δ v
1−δ

} increases as v increases.

Hence δE(v, ε) is increasing in v.

As v becomes larger so that x > c, the on-path value c + δV (v, ε) also increases

as v increases, so that we need to see the relative change between the on-path value

and the punishment phase. Recall that the critical value g−c
(1−p)(g−d)

is independent of v.

Recall the definition of δV (v, ε);

c + δV (v, ε) = g + δ
v

1 − δ
⇐⇒ δ(1 − p){(1 − δ)(c − v) + εp}

(1 − δ){1 − (1 − p)δ}
= g − c.
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Notice that the LHS of the second equality is increasing in δ and decreasing in v. There-

fore, δV (v, ε) is increasing in v, and thus max{δV (v, ε), g−c
(1−p)(g−d)

} is non-decreasing in

v.

Proof of Corollary 2: Recall that c = x if and only if ε 5 c−v
1−p

. Thus there are two

regions of ε, 0 < ε 5 c−v
1−p

and c−v
1−p

< ε to be distinguished. In the former, the relevant

lower bound to the discount factors is δE(v, ε) = max{δD(v), δcW (v, ε)}. Notice that

v > pg + (1 − p)d ⇐⇒ c − v

1 − p
<

(v − d)(c − v)

p(g − v)
.

Hence ε 5 c−v
1−p

implies that ε < (v−d)(c−v)
p(g−v)

, which is equivalent to δD(v) < δP (v, ε).

Therefore when v > pg + (1 − p)d, δE(v, ε) = δD(v), which is constant over ε.

In the latter interval c−v
1−p

< ε, the relevant lower bound to the discount factors is

δS(v, ε) = max{δV (v, ε), g−c
(1−p)(g−d)

}.
We show that δV (v, ε) is decreasing in ε. Recall the definition of δV (v, ε),

c + δV (v, ε) = g + δ
v

1 − δ
.

As ε increases, the LHS cooperation value increases while the RHS deviation value

is the same. Since the LHS intersects with the RHS from below (see Figure 4), the

intersection δV decreases, as ε increases.

Proof of Proposition 4: It suffices to prove that Player 2 does not deviate under

δ = δF . Recall that Player 1 exits with probability 1 − F (r∗(d, δ)) if the optimal

reservation level is r∗(d, δ). Hence Player 2’s deviation value is{
g + δ · 0 if δ 5 v−d

v−d

g + δ d
1−δF (r∗(d,δ))

if v−d
v−d

5 δ.

Player 2’s total expected payoff in the cooperation phase is

c

1 − δF (r∗(c, δ))
.

Since we have assumed that δD(v) 5 v−d
v−d

, it suffices to show that the smallest δ that

satisfies
c

1 − δF (r∗(c, δ))
= g (18)
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is not more than δD(v). By rearrangement, (18) is equivalent to

δF (r∗(c, δ))g = g − c.

We first prove that c < r∗(c, δ). Notice that v > c is equivalent to∫ v

c

(x − c)f(x)dx > 0

⇐⇒
∫ v

c

xf(x)dx + F (c)c > c

⇐⇒ (1 − δ)c + δ

∫ v

c

xf(x)dx + δF (c)c > c.

This implies that at r = c, the RHS of (11) is above the 45 degree line. Hence the

intersection with the 45 degree line (which is r∗(c, δ)) is greater than c for any δ.

(See Figure 6.) Therefore we also have that F (c) < F (r∗(c, δ)) for any δ, and thus

v > {1 − F (c)}g implies that

δF (r∗(c, δ))g > δF (c)g > δ(g − v).

Second, note that when δ = δD(v), δ(g − v) = g − c. Therefore at δ = δD(v),

δF (r∗(c, δ))g > g − c,

and δF (r∗(c, δ))g is uniformly greater than δF (c)g for any δ ∈ (0, 1). Thus there exists

δF2 < δD(v) such that for any δ = δF2, Player 2 does not deviate. Let δF1 be the bound

for Player 1, then as shown in the text δF1 < δD(v) as well. Let δF = max{δF1, δF2}
then this is the lower bound that sustains the stochastic cooperation and is strictly

smaller than δD(v).

Proof of Lemma 4: (a) Recall that

V = p
x

1 − δ
+ (1 − p)(c + δV )

V ′ = p
x

1 − δ
+ (1 − p){px − ε

1 − δ
+ (1 − p)(c + δV ′)}

By subtracting both sides, we have

V − V ′ = (1 − p)[δ(V − V ′) + p{(c + δV ′) − x − ε

1 − δ
}].

Since c + δV ′ > x−ε
1−δ

, we have that V > V ′.
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Analogously, subtract V ′′ from V and we get

V − V ′′ = p(
x

1 − δ
− v

1 − δ
) + δ(1 − p)(V − V ′′).

Since x > v, we have that V > V ′′.

(b) Rearrange V ′ so that

V ′ = p
v

1 − δ
+ (1 − p){p x

1 − δ
+ (1 − p)(c + δV ′)}.

By subtracting V ′′ from this, we have

V ′ − V ′′ = (1 − p)p{ x

1 − δ
− (c + δV ′)} + δ(1 − p)(V ′ − V ′′).

Therefore V ′ = V ′′ if and only if x
1−δ

= c + δV ′. Let us compare:

x

1 − δ
= x + δ{p x

1 − δ
+ p(1 − p)

x

1 − δ
+ (1 − p)2 x

1 − δ
}

c + δV ′ = c + δ{p x

1 − δ
+ p(1 − p)

x − ε

1 − δ
+ (1 − p)2(c + δV ′)}.

By subtracting both sides, we have that

x

1 − δ
− (c + δV ′) = x − c + δ[p(1 − p)

ε

1 − δ
+ (1 − p)2{ x

1 − δ
− (c + δV ′)}].

Hence V ′ = V ′′ ⇐⇒ x
1−δ

= c + δV ′ if and only if x − c + δp(1 − p) ε
1−δ

= 0.

Proof of Lemma 5: From (15), we have

W ′ =
p x

1−δ
+ p(1 − p)x−ε

1−δ
+ (1 − p)2d

1 − (1 − p)2δ
.

Using x = v + ε(1 − p), we have

(
v

1 − δ
− W ′)(1 − δ){1 − (1 − p)2δ} = (1 − p)2{v − d − εp − (v − d)δ},

so that
v

1 − δ
= W ′ ⇐⇒ δ 5 δP (v, ε). (19)

Moreover, by comparing (5) and (15);

W = p
x

1 − δ
+ p(1 − p)(d + δW ) + (1 − p)2(d + δW )

W ′ = p
x

1 − δ
+ p(1 − p)

x − ε

1 − δ
+ (1 − p)2(d + δW ′)

⇒ W − W ′ = p(1 − p)(d + δW − x − ε

1 − δ
).
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Therefore W = W ′ if and only if d + δW = x−ε
1−δ

. By rearrangements,

d + δW = x − ε

1 − δ

⇐⇒ (1 − p)(d + δW ) = (1 − p)
x − ε

1 − δ

⇐⇒ p
x

1 − δ
+ (1 − p)(d + δW ) = p

x

1 − δ
+ (1 − p)

x − ε

1 − δ

⇐⇒ W = v

1 − δ

⇐⇒ δ = δP (v, ε).

Combined with (19), we have that

δ 5 δP (v, ε) ⇒ g + δ
v

1 − δ
= g + δW ′ = g + δW ;

δP (v, ε) 5 δ ⇒ g + δW = g + δW ′ = g + δ
v

1 − δ
.
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Dal Bò, P., 2007. Tacit collusion under interest rate fluctuations. RAND J. Econ. 38,

1-8.

Datta, S., 1996. Building trust. Working paper, London School of Economics.

Dutta, P., 1995. A folk theorem for stochastic games. J. Econ. Theory 66, 1-32.

Ellison, G., 1994. Cooperation in the prisoner’s dilemma with anonymous random

matching. Rev. Econ. Stud. 61, 567-588.

Fujiwara-Greve, T., 2002. On voluntary and repeatable partnerships under no infor-

mation flow. Proceedings of the 2002 North American Summer Meetings of the

Econometric Society (http://www.dklevine.com/proceedings/game-theory.htm).

Fujiwara-Greve, T., Okuno-Fujiwara, M., 2009. Voluntarily separable repeated pris-

oner’s dilemma. Rev. Econ. Stud. 76, 993-1021.

35



Fujiwara-Greve, T., Yasuda, Y., 2009. Cooperation in repeated prisoner’s dilemma

with outside options. SSRN working paper

(http://papers.ssrn.com/sol3/papers.cfm?abstract id=1092359).

Furusawa, T., Kawakami, T., 2008. Gradual cooperation in the existence of outside

options. J. Econ. Behav. and Org. 68, 378-389.

Ghosh, P., Ray, D., 1996. Cooperation in community interaction without information

flows. Rev. Econ. Stud. 63, 491-519.

Kandori, M., 1992. Social norms and community enforcement. Rev. Econ. Stud. 59,

63-80.

Kranton, R., 1996a. The formation of cooperative relationships. J. Law. Econ. & Org.

12, 214-233.

Kranton, R., 1996b. Reciprocal exchange: A self-sustaining system. Amr. Econ. Rev.

86, 830-851.

Mailath, G., Samuelson, L., 2006. Repeated Games and Reputations. Oxford Univer-

sity Press, Oxford.

McAdams, D., 2007. Dynamics in a evolving partnership. memeo. MIT Sloan, Cam-

bridge, MA.

Okuno-Fujiwara, M., Postlewaite, A., 1995. Social norms and random matching games.

Games Econ. Behav. 9, 79-109.

Rotemberg, J., Saloner, G., 1986. A supergame-theoretic model of price wars during

booms. Amr. Econ. Rev. 76, 390-407.

Watson, J., 2002. Starting small and commitment. Games Econ. Behav. 38, 176-199.

Yasuda, Y., 2007. The theory of collusion under financial constraints. mimeo, GRIPS,

Tokyo.

Yasuda, Y., Fujiwara-Greve, T., 2009. Cooperation in repeated prisoner’s dilemma

with perturbed payoffs. mimeo. GRIPS and Keio University, Tokyo. (Available at

http://ssrn.com/abstract=1420822.)

36


